National Institute of Allergy and Infectious Diseases, NIH

Volume 1

Frontiers in Research

Edited by

Vassil St. Georgiev, PhD
Karl A. Western, MD
John J. McGowan, PhD

National Institute of Allergy and Infectious Diseases,
National Institutes of Health, DHHS, Bethesda, MD
Dedication

To the thousands of investigators who, for more than 50 years, have received the support of the National Institute of Allergy and Infectious Diseases (NIAID) and have dedicated their lives and careers to biomedical research.

RESEARCH IS NOT A SYSTEMATIC OCCUPATION
BUT AN INTUITIVE ARTISTIC VOCATION

Albert Szent-Györgyi
For more than 50 years, as part of the National Institutes of Health, the mission of the National Institute of Allergy and Infectious Diseases (NIAID) has been to conduct and support basic and applied research to better understand, treat, and prevent infectious, immunologic, and allergic diseases with the ultimate goal of improving the health of individuals in the United States and around the world.

In recent years, NIAID has responded to new challenges including emerging and re-emerging infectious diseases, potential bioterrorism threats, and an increase in pediatric asthma prevalence. A cornerstone of NIAID-supported research also continues to be the discovery and improvement of vaccines focused on an array of infectious diseases with global public health importance.

As part of its mission to foster biomedical discovery and to reduce the burden of human disease, NIH and NIAID in particular, are committed to encouraging the accelerated translation of biomedical discoveries into effective clinical care and public health practice throughout the world. In pursuit of this goal and its disease-specific scientific objectives, NIAID seeks to broaden research opportunities and collaborations involving scientists and institutions outside the United States.

During 2006, special emphasis was given to fostering scientific collaboration between U.S. researchers and investigators in Central and Eastern Europe, the Baltic Region, Russia, Ukraine, and other newly independent states that were formerly part of the Soviet Union. Although the countries of Central and Eastern Europe have strong traditions in biomedical research, scientists from this region have been less successful than their Western European colleagues in competing for NIAID funding and in forming partnerships with U.S. scientists. To help address this situation, NIAID convened a research conference in Opatija, Croatia (June 24–30, 2006) so that U.S. and European scientists could explore shared research interests with a focus on microbiology and infectious diseases, HIV/AIDS, and basic and clinical immunology.

In the field of microbiology and infectious diseases, major presentations at the conference focused on recent research developments in emerging and re-emerging infections (anthrax and other potential biological weapons, vector-borne infections, tuberculosis, and influenza). A number of presentations discussed ongoing research targeting the development of infectious disease prophylactics and therapeutics.

One of the most serious problems worldwide that confronts efforts to control and treat infectious diseases is the increasing resistance of some pathogens to the current armamentarium of drugs. Microorganisms belonging to all four classes of infectious agents (bacteria, viruses, parasites, and fungi) have developed resistance to previously effective chemotherapeutics, thereby becoming serious threats to individual well-being and international public health. One striking example of drug resistance is the emergence of extensively drug-resistant tuberculosis. Several conference presentations were therefore focused on drug resistance.

HIV/AIDS also remains a major infectious disease research priority and it was well addressed during the conference. Since the start of the HIV/AIDS pandemic in the early 1980s, nearly 20 million people worldwide have died of the disease. According to an estimate issued by the Joint United Nations Programme on HIV/AIDS (UNAIDS) by the end of 2003, about 38 million adults and children were living with HIV/AIDS and in many countries overall prevalence still is rising. Although much progress has been made in the treatment of AIDS and in understanding effective strategies to prevent HIV transmission, research is urgently needed on vaccines, microbicides, therapeutic agents, behavioral prevention strategies, and the management of HIV-related co-morbidities.

NIAID-funded research in basic and clinical immunology has led to significant discoveries that have guided the effective treatment of a host of immunological conditions. For example, “tolerance induction” research has enabled the selective blocking of inappropriate or destructive immune responses while leaving protective immune responses intact. Major presentations at
the conference discussed various topics in immunomodulation, autoimmunity, infections and immunity, and vaccine development.

Finally, two sessions at the research conference were designed to inform participants about NIAID’s research funding mechanisms and the NIH application process.

With more than 100 participants, the 2006 NIAID Research Conference in Croatia clearly demonstrated NIAID’s commitment to a cutting-edge scientific exchange to help generate more research cooperation. Following the meeting, numerous research collaborations have been explored and numerous joint research applications have been prepared and submitted.

NIAID is pleased to have supported this important and unusual meeting and it welcomes publication of the important scientific findings presented there. The future of science lies in cooperation across national borders. Therefore, it is particularly rewarding to see research partnerships grow between scientists from countries previously characterized by a lack of communication and mutual understanding. With a strong research base, talented investigators in the United States and abroad, and the availability of powerful new research tools, NIAID will continue to support scientists in the forefront of basic and applied infectious and immune-mediated disease research.

Vassil St. Georgiev
Bethesda, MD
Acknowledgments

We would like to express our appreciation to Ms. Caroline Manganiello and the staff of technical writers for their help in the preparation of this volume.
Contents

Preface ... vii
Vassil St. Georgiev

Acknowledgments ... ix

Contributors .. xv

PART I INTRODUCTION

National Institute of Allergy and Infectious Diseases (NIAID): An Overview ... 3
Karl A. Western

PART II MICROBIOLOGY AND INFECTIOUS DISEASES

Section 1 Emerging and Re-Emerging Infections

1 Biotools for Determining the Genetics of Susceptibility to Infectious Diseases and Expediting Research Translation into Effective Countermeasures ... 13
Malak Kotb, Robert W. Williams, Nourtan Fathey, Mohamed Nooh, Sarah Rowe, Rita Kansal, and Ramy Azz

2 Spore Surface Components and Protective Immunity to Bacillus anthracis ... 19
Patricia Sylvestre, Ian Justin Glomski, Evelyne Couture-Tosi, Pierre Louis Goossens, and Michèle Mock

3 New Candidate Anthrax Pathogenic Factors ... 25
Serguei G. Popov

4 Ehrlichiae and Ehrlichioses: Pathogenesis and Vector Biology .. 37
H. L. Stevenson, N. Ismail, and D. H. Walker

5 Multiple Locus Variable Number Tandem Repeat (VNTR) Analysis (MLVA) of Brucella spp. Identifies Species-Specific Markers and Insights into Phylogenetic Relationships .. 47
Lynn Y. Huynh, Matthew N. Van Ert, Ted Hadfield, William S. Probert, Bryan H. Bellaire, Michael Dobson, Robert J. Burgess, Robbin S. Weyant, Tanja Popovic, Shaylan Zanecki, David M. Wagner, and Paul Keim

6 Expression of the MtrC-MtrD-MtrE Efflux Pump in Neisseria gonorrhoeae and Bacterial Survival in the Presence of Antimicrobials .. 55
Section 2 Tuberculosis

7 What can Mycobacteriophages Tell Us About Mycobacterium tuberculosis? .. 67
 Graham F. Hatfull

8 Clinical Mycobacterium tuberculosis Strains Differ in their Intracellular Growth in Human Macrophages 77
 Sue A. Theus, M. Donald Cave, and Kathleen D. Eisenach

9 Mechanisms of Latent Tuberculosis: Dormancy and Resuscitation of Mycobacterium tuberculosis 83
 Galina Mukamolova, Elena Salina, and Arseny Kaprelyants

10 Separating Latent and Acute Disease in the Diagnosis of Tuberculosis .. 91
 T. Mark Doherty

11 Mutant Selection Window Hypothesis: A Framework for Anti-mutant Dosing of Antimicrobial Agents 101
 Karl Drlica and Xilin Zhao

Section 3 Avian Influenza

12 The NIAID Influenza Genome Sequencing Project ... 109
 Lone Simonsen, Gayle Bernabe, Karen Lacourciere, Robert J. Taylor, and Maria Y. Giovanni

13 Lessons from the 1918 Spanish Flu Epidemic in Iceland ... 115
 Magnús Gottfredsson

14 Control of Notifiable Avian Influenza Infections in Poultry ... 123
 Ilaria Capua and Stefano Marangon

15 Understanding the Complex Pathobiology of High Pathogenicity Avian Influenza Viruses in Birds 131
 David E. Swayne

Section 4 Prophylactics and Therapeutics for Infectious Diseases

16 Development of Prophylactics and Therapeutics Against the Smallpox and Monkeypox Biothreat Agents 145
 Mark Buller, Lauren Handley, and Scott Parker

17 The Hierarchic Informational Technology for QSAR Investigations: Molecular Design of Antiviral Compounds ... 163

18 Antivirals for Influenza: Novel Agents and Approaches ... 179
 William A Fischer, II and Frederick Hayden

19 Anti-Infectious Actions of the Proteolysis Inhibitor ε-Aminocaproic Acid (ε-ACA) ... 193
 V. P. Lozitsky

20 A New Highly Potent Antienteroviral Compound ... 199
 Lubomira Nikolaeva-Glomb, Stefan Philipov, and Angel S. Galabov

Section 5 Russian Perspectives in Emerging and Re-Emerging and Infections Research

21 Reduction and Possible Mechanisms of Evolution of the Bacterial Genomes ... 205
 George B. Smirnov

22 Interaction of Yersinia pestis Virulence Factors with IL-1R/TLR Recognition System 215
23 IS481-Induced Variability of *Bordetella pertussis* .. 227
 Ludmila N. Sinyashina, Alisa Yu. Medkova, Evgeniy G. Semin, Alexander V. Chestkov,
 Yurii D. Tsygankov, and Gennady I. Karataev

24 Microarray Immunophosphorescence Technology for the Detection of Infectious Pathogens 233
 Nikolay S. Osin and Vera G. Pomelova

25 Development of Immunodiagnostic Kits and Vaccines for Bacterial Infections 241
 Valentina A. Feodorova and Onega V. Ulianova

Section 6 Perspectives in Emerging and Re-Emerging Infections—Research in Central Asia and Caucasus

26 Research in Emerging and Re-Emerging Diseases in Central Asia and the Caucasus:
 Contributions by the National Institute of Allergy and Infectious Diseases and the National Institutes of Health ... 251
 Katherine T. Herz

27 Disease Surveillance in Georgia: Benefits of International Cooperation .. 253
 Lela Bakanidze, Paata Imnadze, Shota Tsanava, and Nikoloz Tsertsvadze

28 Epidemiology (Including Molecular Epidemiology) of HIV, Hepatitis B and C in Georgia:
 Experience From U.S.—Georgian Collaboration .. 257
 Tengiz Tsertsvadze

29 The National Tuberculosis Program in the Country of Georgia: An Overview 263
 Archil Salakia, Veriko Mirtshkulava, Shalva Gamtsemidze, Marina Janjgava,
 Rusudan Aspindzelashvili, and Ucha Nanava

PART III HUMAN IMMUNODEFICIENCY VIRUS AND AIDS

30 Virus Receptor Wars: Entry Molecules Used for and Against Viruses Associated with AIDS 271
 Edward A. Berger

31 HIV Latency and Reactivation: The Early Years ... 279
 Guido Poli

32 HIV-1 Sequence Diversity as a Window Into HIV-1 Biology .. 289
 Milloni Patel, Gretja Schnell, and Ronald Swanstrom

33 Human Monoclonal Antibodies Against HIV and Emerging Viruses ... 299
 Dimitri S. Dimitrov

34 Biological Basis and Clinical Significance of HIV Resistance to Antiviral Drugs 309
 Mark A. Wainberg and Susan Schader

35 NIAID HIV/AIDS Prevention Research .. 319
 David N. Burns and Roberta Black

36 Epidemiological Surveillance of HIV and AIDS in Lithuania .. 327
 Saulius Caplinskas

PART IV IMMUNOLOGY AND VACCINES

Section 1 Immunomodulation

37 TACI, Isotype Switching, CVID, and IgAD .. 343
 Emanuela Castiglioni and Raif S. Geha

38 A Tapestry of Immunotherapeutic Fusion Proteins: From Signal Conversion to Auto-stimulation 349
 Mark L. Tykocinski, Jui-Han Huang, Matthew C. Weber, and Michal Dranitzki-Elhalel
A Role for Complement System in Mobilization and Homing of Hematopoietic Stem/Progenitor Cells
M. Z. Ratajczak, R. Reca, M. Wysoczynski, M. Kucia, and J. Ratajczak

Post-translational Processing of Human Interferon-γ Produced in Escherichia coli and Approaches for Its Prevention
Maya Boyanova, Roumyana Mironova, Toshimitsu Niwa, and Ivan G. Ivanov

Section 2 Autoimmunity

B-cell dysfunctions in Autoimmune Diseases
Moncef Zouali

A Model System for Studying Mechanisms of B-cell Transformation in Systemic Autoimmunity
Wendy F. Davidson, Partha Mukhopadhyay, Mark S. Williams, Zohreh Naghashfar, Jeff X. Zhou, and Herbert C. Morse, III

Breach and Restoration of B-Cell Tolerance in Human Systemic Lupus Erythematosus (SLE)
Iñaki Sanz, R. John Looney, and J. H. Anolik

Section 3 Infection and Immunity

Dendritic Cells: Biological and Pathological Aspects

Immunomic and Bioinformatics Analysis of Host Immunity in the Vaccinia Virus and Influenza A Systems
Magdalini Moutaftsi, Bjorn Peters, Valerie Pasquetto, Carla Oseroff, John Sidney, Huynh Hoa-Bui, Howard Grey, and Alessandro Sette

Immunoreactions to Hantaviruses
Alemka Markotic and Connie Schmaljohn

Innate Immunity to Mouse Cytomegalovirus
Djurdjica Cekinovic, Irena Slavuljica, Tihana Lenac, Astrid Krmpotic, Bojan Polic, and Stipan Jonjić

Section 4 Vaccines

Research and Development of Chimeric Flavivirus Vaccines
Simon Delagrave and Farshad Guirakhoo

Correlates of Immunity Elicited by Live Yersinia pestis Vaccine
Vivian L. Braciale, Michael Nash, Namita Sinha, Irina V. Zudina, and Vladimir L. Motin

PART V BUILDING A SUSTAINABLE PERSONAL RESEARCH PORTFOLIO

Strategies for a Competitive Research Career
Hortencia Hornbeak and Peter R. Jackson

Selecting the Appropriate Funding Mechanism
Priti Mehrotra, Hortencia Hornbeak, Peter R. Jackson, and Eugene Baizman

Preparing and Submitting a Competitive Grant Application
Peter R. Jackson and Hortencia Hornbeak

Identifying Research Resources and Funding Opportunities
Eugene Baizman, Hortencia Hornbeak, Peter R. Jackson, and Priti Mehrotra

Index
Contributors

Vyacheslav M. Abramov • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubchany, Russia

J. H. Anolik • Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

A. G. Artemenko • A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa, Ukraine

Rusudan Aspindzelashvili • National Center for Tuberculosis and Lung Diseases / National Tuberculosis Program (NCTBLD/NTP), Tbilisi, Republic of Georgia

Ramy Aziz • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis, TN, USA

Eugene Baizman • Scientific Review Program, Division of Extramural Activities, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Lela Bakanidze • National Center for Disease Control and Medical Statistics of Georgia, Tbilisi, Republic of Georgia

Jacqueline T. Balthazar • Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA

Jacques Banchereau • Baylor Institute for Immunology Research, Dallas, TX, USA

Bryan H. Bellaire • Louisiana State University Health Science Center, Shreveport, LA, USA

Edward A. Berger • Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Gayle Bernabe • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Robert Black • Prevention Sciences Branch, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Maya Boyanova • Department of Gene Regulations, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria

Vivian L. Braciale • Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA

Robert R. Brubaker • Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA

Mark Buller • Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO, USA

Robert J. Burgess • Armed Forces Institute of Pathology, Washington, DC, USA

David N. Burns • Prevention Sciences Branch, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Saulius Caplinskas • Lithuanian AIDS Center, Mykolas Romeris University, Vilnius, Lithuania

Ilaria Capua • OIE/FAO Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy

Emanuela Castigli • Division of Immunology, Children’s Hospital, Boston, MA, USA

M. Donald Cave • Neurobiology and Developmental Science, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA

Duirdica Cekinovic • Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

Alexander V. Chestkov • State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia

Evelyne Couture-Tosi • Unité Toxines et Pathogénie Bactériennes, Institut Pasteur, Paris, France

Wendy F. Davidson • Marlene and Stewart Greenebaum Cancer Center and Department of Microbiology and Immunology, and the Center for Vascular and Inflammatory Diseases, BioPark Building 1, University of Maryland, Baltimore, MD, USA

Simon Delagrave • Acambis Inc., Cambridge, MA, USA

Tiziana Di Pucchio • Baylor Institute for Immunology Research, Dallas, TX, USA

Dimitro S. Dimitrov • Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA

Michael Dobson • Armed Forces Institute of Pathology, Washington, DC, USA

T. Mark Doherty • Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark

Michal Dranitzki-Elhalel • Hadassah Medical Center, Ein Kerem, Israel

Karl Drlica • Public Health Research Institute, Newark, NJ, USA

Kathleen D. Eisenach • Departments of Pathology, Microbiology and Immunology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA

Valentin I. Evstigneev • Department of Biochemistry, Immunity, and Biodefense, Institute of Immunological Engineering, Lyubchany, Russia

Nourtan Fathey • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis, TN, USA
Statistics of Georgia, Tbilisi, Republic of Georgia

Microbiology, Russian Academy of Medical Sciences, Moscow, Russia

Immunology Research Center, Tbilisi, Republic of Georgia

Selection of Industrial Microorganisms, Moscow, Russia

Medical Statistics of Georgia, Tbilisi, Republic of Georgia

USA

Medicine, University of Pennsylvania, Philadelphia, PA, USA

Allergy and Immunology, La Jolla, CA, USA

Allergy and Infectious Diseases, AIDS, and Clinical Immunology Research Center, Tbilisi, Republic of Georgia

State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia

Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

HIDEKI UENO • Baylor Institute for Immunology Research, Dallas, TX, USA

ONEGA V. ULIANOVA • Scientific and Research Department, Saratov State University, Saratov, Russia

VLADIMIR N. UVERSKY • Department of Biochemistry of Immunity and Biodefense, Institute of Immuno logical Engineering, Lyubuchany, Russia

MATTHEW N. VAN ERT • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

ANATOLY M. VASILEV • Department of Biochemistry of Immunity and Biodefense, Institute of Immuno logical Engineering, Lyubuchany, Russia

RAISA N. VASILENKO • Department of Biochemistry of Immunity and Biodefense, Institute of Immuno logical Engineering, Lyubuchany, Russia

DAVID M. WAGNER • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

MARK A. WAINBERG • McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada

MATTHEW C. WEBER • Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

D. H. WALKER • Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA

DOUGLAS E. WARNER • Veterans Affairs Medical Center, Decatur; and Department of Microbiology and Immunology, USA

KARL A. WESTERN • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

ROBBIN S. WEYANT • United States Centers for Disease Control and Prevention, Atlanta, GA, USA

MARK S. WILLIAMS • Department of Microbiology and Immunology, University of Maryland School of Medicine, and Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD, USA

ROBERT W. WILLIAMS • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis TN, USA

M. WYSOCZYSKI • Stem Cell Biology Program, University of Louisville, Louisville, KY, USA

M. SHAYLAN ZANECKI • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

XILIN ZHAO • Public Health Research Institute, Newark, NJ, USA

JEFF X. ZHOU • Laboratory of Immunopathology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA

MONCER ZOULI • Inserm, Paris, University of Paris, France

IRINA V. ZUDINA • Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA

NIKOLAZ TSERTSVADZE • National Center for Disease Control and Medical Statistics of Georgia, Tbilisi, Republic of Georgia

TENGIZ TSERTSVADZE • Infectious Diseases, AIDS, and Clinical Immunology Research Center, Tbilisi, Republic of Georgia

YURIY D. TSYGANKOV • State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia

MARK TYKOCINSKI • Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

LONE SIMONSEN • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

NAMITA SINHA • Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA

LUDMILA N. SINYASHINA • Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, Russia

IRENA SLAVULJICA • Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

GEORGE B. SMIRNOW • The Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia

WILLIAM M. SHAFER • Department of Microbiology and Immunology and Laboratories of Microbial Pathogenesis, Emory University School of Medicine, Atlanta, GA, USA

H. L. STEVENSON • Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA

RONALD SWANSTROM • Department of Microbiology and Immunology, UNC Center For AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

DAVID E. SWAYNE • Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA

PATRICIA SYLVESTRE • Unité Toxines et Pathogénie Bactériennes, Institut Pasteur, Paris, France

ROBERT J. TAYLOR • Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

SUE A. THEUS • Department of Pathology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA

SHOTA TSANAVA • National Center for Disease Control and Medical Statistics of Georgia, Tbilisi, Republic of Georgia

VLADIMIR N. UVERSKY • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubuchany, Russia

MATTHEW N. VAN ERT • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

ANATOLY M. VASILEV • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubuchany, Russia

RAISA N. VASILENKO • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubuchany, Russia

DAVID M. WAGNER • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

MARK A. WAINBERG • McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada

MATTHEW C. WEBER • Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

D. H. WALKER • Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA

DOUGLAS E. WARNER • Veterans Affairs Medical Center, Decatur; and Department of Microbiology and Immunology, USA

KARL A. WESTERN • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

ROBBIN S. WEYANT • United States Centers for Disease Control and Prevention, Atlanta, GA, USA

MARK S. WILLIAMS • Department of Microbiology and Immunology, University of Maryland School of Medicine, and Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD, USA

ROBERT W. WILLIAMS • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis TN, USA

M. WYSOCZYSKI • Stem Cell Biology Program, University of Louisville, Louisville, KY, USA

M. SHAYLAN ZANECKI • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

XILIN ZHAO • Public Health Research Institute, Newark, NJ, USA

JEFF X. ZHOU • Laboratory of Immunopathology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA

MONCER ZOULI • Inserm, Paris, University of Paris, France

IRINA V. ZUDINA • Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
The National Institute of Allergy and Infectious Diseases (NIAID) of the U.S. National Institutes of Health (NIH) is within the U.S. Department of Health and Human Services (DHHS; Figure 1). The NIH is the DHHS agency responsible for biomedical research and research training. In the U.S. federal system, health is considered primarily a local and state responsibility, with the federal government providing support and assistance as required. Biomedical research, however, is viewed as a federal responsibility. For that reason, the NIH size and budget have resulted in its becoming the largest of the DHHS agencies.

The NIH consists of 27 institutes and centers, 24 of which carry out and fund biomedical research and three that support the NIH biomedical research endeavor (Figure 2). Each institute consists of two major components: the extramural and the intramural. Intramural programs consist of NIH scientists working in NIH government laboratories. Intramural research constitutes of about 10 to 20% of each institute’s research effort and budget. Intramural researchers select scientists to come to their laboratories for research training and conduct international research using the funding available to their laboratory. The extramural program of each institute is approximately 80 to 90% of its total funding and operates through both unsolicited and solicited research applications for grants, collaborative agreements, and contracts. Applications are submitted to the NIH Center for Scientific Review, which assigns each application to the appropriate initial review group for scientific peer review and to an institute according to the scientific content of the application and the research mission of the institute. NIH is unique among national biomedical research agencies in that nearly one-half of the intramural scientists are not U.S. citizens and that foreign scientists are eligible to apply directly or as a partner in extramural awards.

NIAID is similar in its organization to other NIH institutes in that it has three intramural divisions and five extramural divisions (Figure 3). The Division of Intramural Research heavily emphasizes basic biomedical research, while the Vaccine Research Center’s mission includes the discovery and early development of vaccine products. The Division of Clinical Research was established in 2006 to set up domestic and international sites to carry out human subject studies on new or improved diagnostic tests, drugs, vaccines and other prevention products. The Division of Microbiology and Infectious Diseases is responsible for all infectious and parasitic diseases except for the human acquired immunodeficiency syndrome (AIDS). The Division of AIDS is responsible for AIDS and related conditions. The Division of Allergy, Immunology, and Transplantation is concerned with the human immune system. The Division of Extramural Activities provides support to the other three extramural divisions through NIAID-organized initial review groups, grant and contract management, and award databases.

The NIAID mission is to understand, treat, and ultimately prevent infectious, immunological, and allergic diseases that affect or threaten U.S. populations and hundreds of millions of people worldwide. The major areas of NIAID investigation currently are (in alphabetical order): AIDS; acute respiratory infections, including influenza; antimicrobial drug resistance, asthma and allergic diseases; civilian biodefense; emerging infectious diseases; enteric infections; genetics, transplantation, and immune tolerance; immune disorders; malaria and other tropical diseases; sexually transmitted diseases; tuberculosis, and vaccine development and evaluation.

The evolution of the NIAID budget is summarized in Figure 4. Prior to the recognition of AIDS, NIAID was the seventh largest NIH Institute. As a result of its research responsibilities in infectious diseases and immunology, funding for AIDS and AIDS-related research rose to become one-half of the NIAID budget. Subsequent to the anthrax attacks in 2001, NIAID was given lead responsibility for the U.S. Civilian Biodefense Research Initiative. At the present time, NIAID is the second
largest institute after the National Cancer Institute. NIAID research funding is approximately one-third AIDS, one-third civilian biodefense, and one-third non-AIDS/non-biodefense. Following a Congressional mandate to double the NIH budget in the 1990s, the NIH budget has been flat for the past several years, resulting in overall inflation-adjusted negative growth. During this period, NIAID funding for international research has maintained a slow and steady growth (Figure 5) so that international research now accounts for 10% of the total NIAID budget. This remarkable sustainability is due to the globalization of health problems, the relevance of health conditions globally to domestic U.S. health problems, humanitarian objectives, and the economic development, political stability, and increasing investment in international health on the part of key international partners such as Brazil, China, and India. This sustained interest and growth in international research is not seen across NIH. One major factor that fuels NIAID’s global research activities is that our mission in infectious diseases necessitates that we partner with countries that have heavier burdens of disease and/or different risk factors in the development of clinical sites and the evaluation of new or improved diagnostic tests, treatment modalities, or prevention products.

NIAID operates under five guiding principles in Global Health Research. First, every effort is made to target collaborative research efforts to the needs of the partner country or region. Second, it strives to develop collaborative relationships that begin with collaboration in basic research and discovery so that intellectual property can be shared and proceed through product development, the design of human subject studies, and the conduct of rigorous clinical trials that generate data resulting in approval of the product by regulatory agencies. Third, to achieve multidisciplinary research collaboration, research capacity must be built and sustained in the host country. Fourth, NIAID strives to stimulate scientific collaboration and global multi-sector partnerships. Finally, NIAID international collaboration must develop training, communication, and outreach programs.

NIAID uses six approaches to support its international research. The first is through the NIAID intramural research divisions for pre- and postdoctoral research training. This research training frequently results in sustained collaboration once the visiting scientists have returned to their home countries. Intramural collaboration is limited by the resources available in each laboratory but has the advantages of being
decentralized and scientifically driven, and it provides the opportunity to establish long-term collaboration with the NIAID laboratory and other researchers who have trained there. Because about 50% of NIH intramural scientists are from outside the United States and only 10% of intramural scientists become tenured, the intramural research training experience provides an opportunity to become part of a global network linking trainees and their home institutions with NIAID-tenured scientists, U.S. scientists who take academic or private sector appointments or join other U.S. agencies, and foreign scientists who return home to continue their research careers.

Foreign investigators are encouraged to partner with U.S. extramural investigators in the submission of investigator-initiated research applications or in response to solicited program announcements (PAs) and requests for applications (RFAs). This is how NIAID supports the bulk of its international research. If the collaboration is between U.S. scientists and scientists in another industrialized country, there may be no NIAID funding involved. On the other hand, if the collaborating overseas scientist is from a middle- or lower-income country and/or does not have his or her own funding, NIAID will provide the U.S. investigator with research funds to support the overseas component.

NIH is unique among national domestic research agencies in that foreign investigators are eligible to apply directly for investigator-initiated research awards. Foreign scientists and institutions are also eligible to apply for most solicited grant and collaborative agreement solicitations. There are no international set-aside funds, and foreign investigators must compete against experienced U.S. investigators. All unsolicited foreign applications with a competitive score must also be approved by the National Allergic and Infectious Diseases Council before funding. Because of the intense competition and grantsmanship required, NIAID does not encourage foreign investigators to apply directly unless their ideas are